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These physical mechanisms can be seen 
in gyrokinetic simulations and movies 

Unstable bad-curvature  
side, eddies point out, 
direction of effective 
gravity 

particles quickly move along field 
lines, so density perturbations are 
very extended along field lines, 
which twist to connect unstable to 
stable side 

Stable  
side, 
smaller 
eddies 

21 

Outline
• Goal 

• Geometry 

• Drifts 

• (Fast) electron motion along B (“adiabatic 
electrons”) 

• Drift motion across B 

• Ion inertial currents (i.e. polarization drifts) 

• What’s next: collisions, Landau damping, 
(low-frequency) EM: δB⊥

"A gyro-Landau-fluid transport model," R. E. Waltz, G. M. Staebler, W. Dorland, G. W. 
Hammett, M. Kotschenreuther, and J. A. Konings, Physics of Plasmas 4, 2482 (1997).

Jan Weiland, Collective Modes in Inhomogeneous Plasma: 
Kinetic and Advanced Fluid Theory, IOP Publishing, 2000.
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Low Frequency Modes in a Magnetized PlasmaThese physical mechanisms can be seen 
in gyrokinetic simulations and movies 

Unstable bad-curvature  
side, eddies point out, 
direction of effective 
gravity 

particles quickly move along field 
lines, so density perturbations are 
very extended along field lines, 
which twist to connect unstable to 
stable side 

Stable  
side, 
smaller 
eddies 

21 
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Vorticity and MixingThese physical mechanisms can be seen 
in gyrokinetic simulations and movies 

Unstable bad-curvature  
side, eddies point out, 
direction of effective 
gravity 

particles quickly move along field 
lines, so density perturbations are 
very extended along field lines, 
which twist to connect unstable to 
stable side 

Stable  
side, 
smaller 
eddies 

21 
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Simple Drift Wave Description

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
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D21 G
applies in the form

dne>

Nef
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. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes
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π ipe
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1
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5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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How Fast is the Diamagnetic Drift?

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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du

i
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D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Simple Drift Wave Description: Parallel Dynamics

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Simple Drift Wave Description: Continuity

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Basic “Drift Wave”

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Ion Inertial Currents (Polarization Drift)

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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du
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e
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D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Ion Inertial Currents (Polarization Drift)

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response
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Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive
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21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
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where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te
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2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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How Much Transport from Drift Waves?
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COLLISIONAL EFFECTS IN PLASMAS —DRIFT-WAVE EXPERIMENTS AND INTERPRETATION*
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We report the results of experiments on low-
temperature alkali plasmas in strong magnet-
ic fields and their interpretation in terms of
collisional drift modes, in which diffusion over
the transverse wavelength, resulting from ion-
ion collisions, ' plays an important role.
Collisional drift modes' arise in the presence

of a density gradient perpendicular to the mag-
netic fieM and result from the combined effects
of ion inertia, electron-ion collisions, and
mean electron kinetic energy along the magnet-
ic-field lines.
Our experiments determine frequencies, am-

plitudes, and azimuthal mode numbers of steady-
state drift waves as functions of magnetic field
strength and ion density. Their interpretation
is based on a theory which includes the effects
of ion-ion collisions on the ion motion. Although
the observed relative wave amplitudes are not
small, the linearized approximation is expect-
ed and found to predict correctly frequencies
and the abrupt appearance of certain modes
as functions of the various physical parameters
(density, magnetic field, temperature, and ion
mass).
The principal experimental results are the

consistent observations of single-mode steady-
state oscillations, which we have identified as
drift modes, and, at certain critical values of
the magnetic-field strength, sudden changes
of both the azimuthal mode number and frequen-
cy' of the oscillations. We have explained these
results by a theory, which predicts abrupt sta-
bilization of a particular mode with decreasing
magnetic field as a result of increased diffusion
over the transverse wavelength due to ion-ion
collisions. This type of diffusion, in fact, sup-
presses the instability when the ion gyroradi-
us reaches a critical size relative to the trans-
verse wavelength of the mode.
The experimental work has been performed

on the Princeton Q-1 device. 7 The plasma con-
sists of ions produced by surface ionization
of cesium or potassium atomic beams incident
on hot tungsten plates located on both ends of
the plasma column and of thermionic electrons
emitted from the same plates. The alkali va-
por pressure is cryogenically reduced to below snl/st+u1. Vn+u. Vn1= 0,1i& i (1c)

10 Torr and the residual pressure is main-
tained at approximately 10 ' Torr, so that the
plasma, is fully ionized. The plasma column
is 3 cm in diameter and 128 cm long. Plasma
(center) densities ranged from 5x10" to 5x10"
cm ', plasma (ionizer-plate) temperatures
from 2100 to 2900'K, and magnetic fields from
2 to 6.5 kG. Electric fields are not applied to
the plasma, and the thermionic voltage between
end plates is maintained below 5 mV. The waves
are detected as either ion-density or plasma-
potential fluctuations with Langmuir probes.
Special effort was directed towards conclusive
identification of the drift wave, since it was
recognized that a plasma rotation comparable
with the electron diamagnetic velocity is pres-
ent in Q machines for certain ranges of plas-
ma temperature and density. ' Our experiments
differ from most previous drift-wave work in
that the neutral beam was collimated to reduce
the ion density at the edge of the ionizer plate
where the temperature gradient is large. This
procedure spatially separates the effects of
temperature and density gradients. ' The oscil-
lations reported here are confined to the region
where only the density gradient is important.
The experiments have shown that the relevant

modes are localized in the radial direction with
the amplitude maximum at approximately —,

' of
the plasma radius. Then, for these localized
modes we can carry out the theory simulating
cylindrical geometry by a one-dimensional "slab"
model, with density gradient in the g direction
and magnetic field in the z direction. We adopt
the electrostatic approximation E = -V'y valid
when p = 8mp/B «1, as is the case here (p & 10 8).
The time-independent electric field (experimen-
tally found to be constant in the region where
temperature gradients are negligible) is ignored
because it only produces a Doppler shift in the
relevant frequencies. We use the following lin-
earized equations adopting a standard notation:

nm(su . )/st p, V 'u, = —v p—+(J xB/c), (la)lid x z lid i1
—V (n KT —en' )—v .nm u =0,

II 1 e 1 ei e 1eIl
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sn /8t+u ~ Vn+u ~ Vn +nV g =0,lei es 1 )) le li
(ld)

u = -Vy xBcB s+KTc(eB n) 'Vn x B, (le)le& 1 1

u. =ETc(+eBan) iVn &B.i, e
Perturbed quantities are indicated by the sub-
script 1. Ion motion and electron inertia along
the lines of force have been ignored. 0 The
effects of ion-ion diffusion across the field e n-
ter through the coefficient p& which is given
by pi = —,'(nETvf/Qi k~ ) for our experimental
conditicns, "with Qi the ion gyrofrequency and
hz a dimensionless coefficient tabulated in Ref.
11. For simplicity we assume a WEB-type
solution y = (pi epx(ifk dxx+ikyy+ikiiz+i~t) and
consider modes such that kx»n ~(dn/dx). This
implies mode localization in. the x direction
and will restrict us to modes with azimuthal
mode number m ) 1, since those with m = 1,
equivalent to an off-axis shift of the whole plas-
ma column, are less localized and cannot be
simulated in a plane geometry. Moreover, in
the experiments, k)i=m/L, where L is the length
of the plasma column. By expressing J1& and
J1ti in terms of cp, one derives for Te = Tz the
dispersion relation in its simplest form,

rk IKT v, .bmi
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values of magnetic field only one single mode
is dete cte d, but in the mode transition regions
two separate modes are observed. The rapid
rise of y =-Im(a) with increasing magnetic
field, once the condition b&b~ is satisfied, is
evident. The second point is that the maximum
growth rate is found to correspond to frequen-
cies Re(a) = —0.5k vd. In particular, we find
that for b(b, the growth rate y is maximized
for the dimensionless parameter ZO =ALII KT
x (mev&&kyvdb) slightly above unity, me
being the electron mass. At this point, the
magnitude of y is -0.2k&gd and is comparable
with the instability frequency. Figure 1(b) shows
that the observed frequencies are proportion-

iv bi..
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where vd = -(1/n)(dn/dx)(cKT/eB) is the elec-
tron diamagnetic velocity, 5 =-,'(kx +k ')aL
is assumed to be smaller than unity, al = (2KT/
M)imam/Qf is the ion Larmor radius, and ve&
=2(M/ms)iI vlf, taking for v&f the definition
of Ref. 11. Here we have neglected terms of
order k)) ET(mevefkyv&) i in comparison with 1.
This dispersion relation is a quadratic equa-
tion whose roots are easily evaluated numer-
ically, and reveals two important points. First,
there exists a critical value of b given by bz
=4k')'KT(meve;vlf) ' such that the linearized
growth rate is positive only for b &b~. In con-
nection with this, we display in Fig. 1 some
experimental results for fixed neutral-beam
flux and plasma temperature, i.e., for approx-
imately constant ion density. Note that for most

0
0

I I I

2 3 4
MAGNETIC FIELD, kG

FIG. 1. (a) Observed oscillation amplitudes are com-
pared with theoretical growth rates as a function of mag-
netic field strength for various azimuthal mode num-
bers. The absolute value of the magnetic field strength
for the theoretical (slab model) curves has been scaled
by a factor of -1.5 to give a good fit to the data. The
relative amplitude is defined as the ratio of the maxi-
mum density fluctuation to the central density. (b) The
oscillation frequency (after subtraction of the rotational
Doppler shift) is compared with the drift frequency vd
=kyvd/2m as a function of the magnetic field strength.
The drift frequency, which has an uncertainty of +0.5
kc/sec, is computed from the experimental values of
k, T, snd n ~(dn/dx). The data, are for a potassium
p asma, no ——3.5&&10 cm 3, T =2800'K.
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al to, but less than, k vd. These considerations
indicate that the criterion" g =&~, which can
be written as
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describes the onset of the single modes. In
Fig. 2(a) we plot the experimental values at
instability onset of B/k& vs n'~' and find agree-
ment between the experiments and this theoret-
ical prediction, including the numerical coef-
ficient. In addition, other measurements have
shown dependence on plasma temperature and
ion mass as predicted by the transition crite-
rion, Eq. (3). ln Fig. 2(b), the radial extent
of the oscillation is shown as a function of mag-
netic field. The extent of the oscillation in the
radial direction was found to increase for de-
creasing values of ~, as expected from the
full analysis of the normal-mode equation and
corresponding to (a/Bg) -k&. The position of
the amplitude maximum does not coincide with
the position of maximum density gradient and
may be determined by the radial dependence
of the growth rate, taking into account both the
variations of n and dn/dx.
It is evident from our treatment that the lin-

earized approximation is inadequate to explain
the large experimental amplitudes (typically
n, /no-ep/KT-20%) at which the growth of the
waves ceases. However, there are good argu-
ments for predicting that the saturation stage
is reached when the perturbed (ExB)c/B' drift
velocity becomes of the order of the diamagnet-
ic velocity (in our case -2x10' cm/sec). This
point is confirmed by the experiment and, in
addition, it is shown [see Fig. 1(a)] that the
pattern of the measured amplitudes follows
closely that of the calculated growth rates a,s
a function of the magnetic field. If we consid-
er this as an indication that at the saturation
stage the amplitude is proportional to a pow-
er of the growth rate, '4 we can associate the
observed frequency with that of the maximum
growth rate. '
On the other hand, if we make use of a quasi-

linear approximation" in treating the problem
and include higher order terms in the disper-
sion relation (see Ref. 12), we observe that
at the saturation level the frequency of oscil-

0
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lation is l~i-k&vd. In this connection we notice
that more detailed measurements than those
given in Fig. 1(b) have shown &u/k&vd = —~.
The observation of one single mode at a giv-

en magnetic field is explained, within the lim-
its of the linearized theory, by the fact that
only one mode has appreciable growth rate out-
side the mode-transition regions.
Several important considerations of general

nature arise from this work. First, the agree-
ment of the theoretically predicted frequencies
with observations, coupled with the fact that
the mode amplitudes maximize when 5, = 1,
implies that the large growth rates given by
the linearized approximation y= 0.2k gd-Re(&u)

FIG. 2. (a) The ratio of magnetic field strength to
perpendicular wave number is plotted versus the square
root of the density for the stabilization points of sever-
al modes. Theory I.Eq'. (3)] gives a proportionality fac-
tor of 9.7 X 10 . (b) The measured radial (~z) and azi-
muthal (~0} wavelengths of the perturbation are dis-
played as a function of the magnetic field.14


